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Abstract

Few-Shot Class-Incremental Learning (FSCIL) aims to learn new classes from
limited samples while preserving knowledge of base classes. However, most exist-
ing FSCIL methods suffer from performance imbalance: accuracy is dominated by
base classes, often accompanied by an asymmetric misclassification problem in which
incremental samples are frequently misclassified as base classes. To address this
issue, we propose an uncertainty-aware FSCIL framework that jointly models fea-
ture representations and predictive uncertainty. An auxiliary MLP branch is trained
alongside the main classifier to estimate an uncertainty score for each feature, en-
abling the model to predict both class identity and confidence. Inspired by the geo-
metric structure of Neural Collapse, we utilize Equiangular Tight Frame (ETF) vec-
tors over the full class set and partition them into base and incremental groups. We
then design an uncertainty scoring function based on their relative alignment with
incoming features. For post-hoc calibration at each incremental session, we com-
pute feature-wise uncertainty scores using the designed scoring function. Then we
estimate the uncertainty distributions of base and incremental classes using mem-
ory prototypes and current session samples, respectively. These distributions are
used to compute class-aware uncertainty likelihoods, which re-weight cosine sim-
ilarity scores for improved decision calibration. Our proposed joint modeling and
calibration improve robustness under class imbalance and yield consistent accu-

racy gains over FSCIL baselines.

Keywords

Deep Learning, Few-Shot learning, Continual Learning, Few-Shot Class-

Incremental Learning, Uncertainty-Aware Learning, Neural Collapse
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Chapter 1

Introduction

1.1 Research background

Deep neural networks (DNNs) have achieved remarkable success in recent years
across a wide range of domains [1], [2]. However, many real-world applications re-
quire learning from streaming data, where storing all past data is often impractical
due to storage limitations or privacy restrictions [3], [4]. In such cases, models must
be able to learn new information while retaining previous knowledge, without
retraining from scratch. To address this, Class-Incremental Learning (CIL) has been
proposed as a learning paradigm where models incrementally learn new classes
while preserving knowledge of previously learned ones [5]-[8]. CIL is inherently a
dynamic learning problem, and its primary challenge is catastrophic forgetting [9],
[10] - the degradation of previous acquired knowledge when adapting to new
data. Nevertheless, in many practical scenarios such as medical diagnosis [11] or
autonomous driving [12], acquiring a large number of labeled samples for each
new class is often infeasible. Instead, only a few labeled examples are available,

making conventional CIL methods hard to apply. To overcome this limitation,
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portionately influenced by the base classes
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FIGURE 1.1: (a) Accuracy gap across sessions, and (b) confusion pat-
tern at last session.

a more realistic and practical paradigm, Few-Shot Class-Incremental Learning
(FSCIL), has been introduced [13]-[20]. Specifically, the FSCIL task consists of
a base session with sufficient training data, followed by multiple incremental
sessions where an extremely limited number of samples are provided. In addition
to catastrophic forgetting, FSCIL introduces a unique challenge of severe class
imbalance, which often leads to overfitting on the scarce incremental data. As
such, FSCIL requires a careful balance between plasticity for learning novel classes
and stability for retaining base knowledge, under both data scarcity and streaming

constraints.

Most existing FSCIL methods aim to ensure high stability by adopting an

incremental-frozen framework and a prototype-based classifier structure [16], [21]-



[25]. In this setting, the backbone encoder is trained only during the base session
using base class data and remains frozen throughout all subsequent incremental
sessions. During these incremental sessions, only the classifier head is updated
by storing the class-mean feature (i.e. prototypes) extracted from the frozen en-
coder. While this strategy maintains strong stability, it still suffers from potential
overfitting on incremental classes. To mitigate this, recent works have proposed
forward-compatible approaches that proactively prepare the feature space during
the base session for the inclusion of future classes. Some expand the representa-
tional space of base classes [14], [22], [23], others predefine classifier weights for
unseen classes [25], or train additional modules to improve generalization to novel
classes [24]. However, as shown in Figure 1.1a, a significant performance gap be-
tween base and incremental classes remains a persistent issue-base accuracy tends
to be high, while incremental accuracy is relatively low. Furthermore, as Figure 1.1b
shows, although misclassifying base classes as incremental classes is rare, the oppo-
site is much more common: incremental class samples are frequently misclassified
as base classes [21].

In this work, we draw inspiration from the asymmetrical misclassification pattern
commonly observed in FSCIL, where incremental class samples are frequently mis-
classified as base classes, but not vice versa. We hypothesize that this asymme-
try reflects an underlying difference in the model’s confidence when dealing with
base and incremental samples. If the model were able to quantify its uncertainty
for each representation, specifically how confident it is about the learned features,
it could enable alternative decision strategies, such as deferring high-uncertainty
predictions to a human-in-the-loop system [26]. In the FSCIL setting, class imbal-
ance causes the model to be more confident about base classes and less so about

incremental classes. Therefore, assigning higher uncertainty scores to incremental



samples can serve as a useful signal to identify potentially misclassified instances.
Recent studies in classification theory have explored the phenomenon of Neural
Collapse, a stage in training where deep representations become highly structured.
In this regime, class features collapse to their respective class means, and the classi-
fier weights converge to an Equiangular Tight Frame (ETF) configuration. Inspired
by this structure, NC-FSCIL [25] pre-assigns ETF-based classifier weights for both
base and future incremental classes. Building upon this idea, we further observe
that the degree of alignment between feature vectors and ETF vectors, across both
base and incremental classes, varies depending on the sample class type. Specifi-
cally, base samples tend to align strongly with base ETF vectors and weakly with
incremental ones, while incremental samples are influenced by both to varying de-
grees. Therefore, we propose to estimate feature-level uncertainty by quantifying
how much a given representation is simultaneously aligned with both the base and
incremental ETF directions. We argue that this uncertainty score can serve as a sig-
nal to identify and correct misclassified incremental samples, thereby mitigating

the performance gap between base and incremental classes in FSCIL.

To address the misclassification asymmetry in FSCIL, we propose to leverage the
geometric properties of the ETF structure to define an uncertainty score based on
the relative alignment between the feature vector and both the base and incremen-
tal ETF vectors. Specifically, we compute the maximum cosine similarity between
the feature representation and each ETF vector to estimate how strongly the feature
is aligned with each class group. Building upon the NC-FSCIL [25], we introduce
an uncertainty head that learns to predict an uncertainty score for each feature em-
bedding. The score is designed such that representations more aligned with incre-

mental ETF vectors produce scores near 0, while those closer to base ETF vectors



produce scores near 1. As a result, incremental samples are expected to yield un-
certainty scores distributed between 0 and 1, whereas base samples produce scores
concentrated near 1. To ensure a consistent interpretation of uncertainty across all
classes, we apply a transformation of "1 - score" for base samples, so that higher
values always indicate higher uncertainty regardless of class type. To the best of
our knowledge, this is the first attempt to incorporate uncertainty estimation into

the FSCIL framework.

To make use of the uncertainty score during incremental session, we perform a
post-hoc calibration procedure at each incremental session. For this, we first com-
pute feature-wise uncertainty score using our scoring function. In practice, we con-
sider two types of uncertainty scores: one predicted by the learned uncertainty
head and the other directly derived from the scoring function based on feature-
to-ETF alignment. While the predicted uncertainty enables end-to-end learning, it
is prone to estimation errors. Therefore, we adopt the scoring-function-based un-
certainty for calibration, as it is deterministic and exhibits no deviation by design.
Then, we model the uncertainty distributions of base and incremental classes sep-
arately—using memory prototypes for base classes and the current session’s sam-
ples for incremental classes. These class-specific distributions allow us to compute
likelihood-based calibration weights, which are used to re-weight the cosine sim-
ilarity scores between features and classifier weights. This enables the model to
adjust its predictions based on how uncertain a sample is with respect to each class
group, helping to suppress overconfident predictions on base classes and recover
misclassified incremental samples.

The key contributions of this work are summarized as follows:



We propose a novel uncertainty estimation strategy tailored for FSCIL, lever-
aging the ETF geometry to quantify how feature representations align with

both base and incremental class prototypes.

We introduce an uncertainty estimation module on top of the NC-FSCIL base-
line, allowing the model to output both class predictions and uncertainty

scores for each input sample.

We design a post-hoc calibration method that re-weights prediction scores us-
ing class-wise uncertainty distributions estimated from memory prototypes

and current session samples, leading to improved classification performance.

Extensive experiments on multiple benchmarks demonstrate that our method
consistently outperforms existing FSCIL baselines across incremental ses-

sions.



Chapter 2

Related Works

2.1 Few-Shot Class-incremental Learning

Few-Shot Class-Incremental Learning (FSCIL) problem focuses on a more practical
setting in addition to class-incremental learning, where new sessions are learned
from only a few training examples. Due to the constraint of limited data avil-
ability, FSCIL presents greater challenges in mitigating catastrophic forgetting and
avoiding overfitting on the few-shot incremental data. FSCIL is first introduced
by TOPIC [13] which uses neural gas (NG) network to model the topology of fea-
ture space. Recent approaches can be broadly categorized into stability-focused and
plasticity-focused methods. Stability-focused approaches consolidate the stability
by utilizing an incremental-frozen framework, and incorporate various techniques
to compensate for limited plasticity. FACT [14] proposes forward compatible train-
ing technique to reserve feature spaces for incoming new classes. SAVC [23] incor-
porates supervised contrastive loss along with fantasy space to enhance sufficient

separation for novel classes. ALICE [22] applies class-level augmentation and data



augmentation to improve generalization to the new classes. NC-FSCIL [25] intro-
duces pre-assigned classifer weights (i.e. prototypes) based on a simplex equian-
gular tight frame (ETF), and fine-tunes a projection layer to align the output fea-
tures with their corresponding prototypes. Plasticity-focus approaches, on the other
hand, enhance the model’s ability to learn new classes by fine-tuning the encoder
through incremental SubNet tuning [27]. However, none of these methods explicity
consider the uncertainty of the feature reprsentations, This motivates the need for

uncertainty-aware FSCIL strategies.

2.2 Neural Collapse

Neural Collapse is a phenomenon observed at the terminal phase of training deep
neural networks for classification tasks, particularly when models are trained to
zero training error using cross-entropy loss and mean-squared error loss functions.
Recent studies have demonstrated that this geometric collapse offers valuable in-
sights into various learning paradigms, including imbalanced learning [28]-[31],
transfer learning [32], [33], and continual learning [25]. To the best of our knowl-
edge, this work is the first to explore uncertainty estimation through the lens of the

unique geometric structure induced by Neural Collapse.

2.3 Uncertainty Quantification

Uncertainty quantification (UQ) [34], [35] has become a critical component in mod-
ern deep learning systems, particularly in safety-critical applications such as medi-

cal diagnosis [36], [37], autonomous driving, and out-of-distribution detection. UQ



aims to estimate the degree of uncertainty in a model’s prediction, typically by as-
signing a scalar uncertainty score to each input sample. This score reflects either
the model’s epistemic uncertainty (stemming from lack of knowledge) or aleatoric
uncertainty (arising from inherent data noise). In this work, we apply uncertainty
quantification to the FSCIL setting and utilize it for post-hoc calibration, aiming to

reduce misclassification of incremental classes.
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Chapter 3

Proposed Method

3.1 Preliminary

3.1.1 The FSCIL Setting

In the Few-Shot Class-Incremental Learning (FSCIL) setting, we assume a total of T
sessions, consisting of one base session (i.e., session 0) and T — 1 incremental sessions
(i.e., sessions 1 through T — 1). The training data for the base session is denoted
by Dy, and the training data for the i-th incremental session is denoted as D; =

{(x,y7) }]N:il, where C; is the corresponding label space.

In each session 7, only the training data D; and label space C; are available; data from
previous sessions is not accessible. The test set for session 7 is denoted as D!**, and

the cumulative test label space is defined as:
i
cit=J¢;, (3.1)
j=0

which is used to evaluate the model’s discriminative ability over all previously seen

classes.
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Each incremental session can also be interpreted as an N-way K-shot classification
task, where N denotes the number of new classes introduced in the session, and
K is the number of labeled examples per class. The label spaces across sessions are

disjoint, i.e., for any i # j, we have C;NC; = @.

Compared to standard Class-Incremental Learning (CIL), FSCIL introduces a more
challenging scenario by limiting the amount of labeled data in incremental sessions.
On the other hand, unlike conventional Few-Shot Learning (FSL), FSCIL requires
the model to continually learn new classes while retaining knowledge of all previ-

ously seen classes.

The model in FSCIL typically consists of a feature encoder ¢ (-), parameterized by
6, and a linear classifier W. Given an input x; € RP, its feature representation is
computed as ¢y (x;) € IRY. For a classification task with N classes, the output logits

are given by:

O; = W ¢g(xj) € RN, where W € R**V. (3.2)

3.1.2 Neural Collapse

Neural Collapse is a phenomenon that arises at the terminal phase of training
deep neural networks, particularly after achieving zero training error on balanced
datasets. It describes the emergence of a highly symmetric geometric structure in-

volving both the last-layer feature representations and the classifier weights.

Definition 1 (Simplex Equiangular Tight Frame (ETF)) A set of K vectors {e;}X_,

in R? forms a Simplex Equiangular Tight Frame if the following conditions are satisfied:
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e All vectors are unit-norm and equiangular, i.e.,

11 kal = k21
(ex, exy) =
—K=1’ ka]. # kZI

o Thematrix E = [e1,ey,...,ex] € R Ksatisfies ETE = (14 59) Ik — 251k1E,

where Iy is the K x K identity matrix and 1k is a K-dimensional vector of ones.

The Neural Collapse phenomenon is characterized by the following four empirical

observations:

(NC1) Variance Collapse: For each class k, the last-layer features collapse to their

class mean j, and the within-class covariance tends to zero:
T = By, | (9(x) — i) (9(x) — )| = 0.

(NC2) Simplex Mean Structure: The class means, after centering by the global

mean jg = % Y x Uk, converge to the vertices of a simplex ETF:

ux — He € ETF structure, Vk € {1,...,K}.

(NC3) Feature-Weight Alignment: The classifier weights wy also form a simplex

ETF and align directionally with their respective class means:

_ 1
Uk — pg || wp — @, where @ = K;wk'
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(NC4) Nearest-Class Decision Rule: When (NC1)-(NC3) are satisfied, the net-
work’s prediction reduces to assigning the sample to the nearest class mean (or

equivalently, nearest weight vector) in the inner product sense:
§ = arg max(awy, ¢(x)) = arg min [9(x) — ju

Overall, Neural Collapse represents a regime in which both the learned features
and classifier weights exhibit optimal geometric alignment, achieving maximal
inter-class separability while minimizing intra-class variability. This structure is
theoretically linked to the maximization of the Fisher Discriminant Ratio, providing
a compelling explanation for the generalization performance of overparameterized

models.

3.1.3 Baseline: NC-FSCIL

In our study, we adopt the NC-FSCIL method as a representative geometry-aware
baseline for the few-shot class-incremental learning (FSCIL) task. NC-FSCIL is
based on the neural collapse phenomenon and employs a fixed classifier structure
derived from a pre-assigned simplex Equiangular Tight Frame (ETF) spanning all

classes across sessions.

Let the base session contain Ky classes, and each of the T incremental sessions in-
troduce p new classes, resulting in a total of K = Ko + T - p classes. The classifier is

constructed as a matrix Wgrp € R?*K, whose column vectors correspond to class
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prototypes. Following the ETF construction, each pair of prototypes (W, , Wy, ) sat-
isfies:

o 1, ifky = ko,
<Wk1, Wk2> = (33)

2, ifky # k.

The model consists of a backbone network f and a projection layer g. Given an
input x;, the model extracts an intermediate feature h; = f(x;), projects it via g, and

normalizes the result to obtain:

i = g(hy), @ZHW . (3.4)

Training is performed using the dot-regression loss, which directly aligns the nor-
malized feature with its corresponding ETF prototype. Specifically, for a sample x;

with ground-truth label y;, the loss is defined as:
PPN 1/ .+ 2
L (Pli, wETF) =5 (W;yi - 1) , (3.5)

where w,,; denotes the fixed ETF prototype for class y;.

During the base session (f = 0), both f and g are optimized to minimize the average
DR loss. In incremental sessions (t > 0), f is frozen and only g is fine-tuned using
the new class data along with a memory buffer that stores the mean intermediate
features of old classes. Classification at test time is performed via inner product

between the normalized output feature and the fixed ETF prototypes.
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3.2 Our Method

3.2.1 Neural Collapse-Driven Uncertainty Estimation

Based on the NC-FSCIL baseline, we propose a neural collapse-driven frame-
work for estimating the uncertainty of feature representations in few-shot class-
incremental learning. Our goal is to predict a scalar uncertainty score u € [0,1] for
a given normalized representation z € R in a supervised manner by leveraging

the geometric structure of pre-defined ETF vectors.

As illustrated in Figure 3.1, our model consists of three components: a backbone
encoder f, a projection head for representation g, and another projection head for
uncertainty ¢“. Given an input x;, the backbone network f extracts intermediate
features, which are then projected via g and normalized to yield the representation
#;. This representation is further passed into g, which predicts the uncertainty

score ;.

To supervise uncertainty learning, we define an EUC Score function that reflects the

relative alignment of z with the base and incremental ETF vectors:

1+ [max cos(f, Wpase) — max cos( f, Wincr)]

EUC-Score = >

This score lies in the range [0, 1], where a lower score indicates strong alignment
with the incremental ETF prototypes, and a higher score indicates strong align-
ment with the base ETF prototypes. Representations near the decision boundary,
equidistant from both prototypes, are assigned scores close to 0.5. This formula-

tion produces a smooth transition of uncertainty from incremental-aligned features
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(scores near 0) to base-aligned features (score near 1), providing an interpretable

measure of directional confidence.

We supervise the uncertainty projection module ¢g* using EUC scores for both base
and incremental session data. To supervise the uncertainty projection module g*,
we define the following regression loss between the predicted uncertainty score

i; = ¢"(pi;) and the EUC score:

Lunc = MSE(g" (71;), EUC-Score(ji;)), (3.6)

where ji; is the normalized feature representation for input x;.

However, due to the strong alignment induced by the DR loss, all real features
tend to be tightly clustered near their respective ETF prototypes. This results in a
behavior in g", where it collapses to predicting near-zero or near-one uncertainty
scores for all inputs, where the model fails to produce meaningful variation across
inputs. In order to provide uncertainty supervision with greater variance and better
coverage across the [0,1] range, we generate pseudo samples between ETF prototypes
to provide richer supervision and guide g" to learn more discriminative uncertainty

estimates. We use two modules to create the samples:

Nearest ETF Search Module. Given a feature z;, we retrieve the ETF vector with

the highest cosine similarity:

WSt — arg max  cos(zg, w). (3.7)
wEWETFE
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In the base session (t = 0), we retrieve the ground-truth ETF vector wy, for the given

label, and the most similar incremental ETF vector w; based on cosine similarity:

w; = arg max cos(z, w), Wi = Were[yil,
Wewlncr

where i denotes the index of the nearest incremental ETF vector, and k is the index

corresponding to the ground-truth label y;.

In incremental sessions (f > 0), we retrieve both the most similar base and incre-

mental ETF vectors:

w; = arg max cos(zx, W), w; = arg max cos(zg, W), Wi = WEgTr[yk,
wewBase Wewlncr

where i and j are the indices of the most similar base and incremental ETF vectors,

respectively, and k is the index for the ground-truth label.

These selected ETF vectors form the interpolation triplet:

{Wk, Wi, W]}

ETF Prototype Interpolation Module. Using the retrieved ETF vectors, we gener-
ate pseudo samples via interpolation. One element of the interpolation pair is fixed
as the ground-truth ETF vector wy. In the base session (t = 0), the other vector is
set to the nearest incremental ETF vector w;. In incremental sessions (f > 0), we

use both the nearest base ETF vector w; and the nearest incremental ETF vector w;



Algorithm 1 Pseudo-code for ETF-based Uncertainty Estimation (PyTorch style)

# etf_vec: [D, C] ETF classifier matrix

# z: feature representation [B, D]

# gt_label: ground-truth labels [B]

# g~u: uncertainty MLP head

# pseudo_ratio: float in (0, 1)

# --- Step 1: Compute Uncertainty Score for Real Samples ---
z = pre_logits(z) # project features

w_base = etf_vec[:, :C_basel # base ETF

w_incr = etf_vec[:, C_base:] # incremental ETF
sim_base = torch.matmul(z, w_base) # [B, C_basel]

sim_incr = torch.matmul(z, w_incr) # [B, C_incr]

max_base = sim_base.max(dim=-1).values # [B]

max_incr = sim_incr .max(dim=-1) .values # [B]

euc_score = 0.5 * (1 + (max_base - max_incr)) # [B]
euc_score = torch.clamp(euc_score, 0, 1)

# --- Step 2: Real Sample Uncertainty Loss ---

score_pred = g_u(z)

loss_real = MSE(score_pred, euc_score)

# --- Step 3: Generate Pseudo Samples between ETF Prototypes ---

pseudo_feats = []
for i in range(B):
label = gt_labell[il
if label < C_base:
w_gt = w_basel[:, labell

w_other = find_nearest(w_gt, w_incr) # cosine similarity
pairs = [w_other]

else:
w_gt = w_incr[:, label - C_base]
w_b = find_nearest(w_gt, w_base)
w_i = find_nearest(w_gt, w_incr, exclude=label - C_base)
pairs = [w_b, w_il]

for w_other in pairs:
for alpha in interpolation_ratios:
pseudo = (1 - alpha) * w_gt + alpha * w_other
noise = torch.randn_like(pseudo) * sigma
pseudo = F.normalize(pseudo + noise, dim=0)
pseudo_feats.append (pseudo)

pseudo_feats = torch.stack(pseudo_feats) # [B’, D]

# --- Step 4: Pseudo Sample Uncertainty Supervision ---
sim_base_pseudo = torch.matmul (pseudo_feats, w_base) # [B’, C_basel
sim_incr_pseudo = torch.matmul (pseudo_feats, w_incr) # [B’, C_incr]
max_base_pseudo = sim_base_pseudo.max(dim=-1).values

max_incr_pseudo = sim_incr_pseudo.max(dim=-1).values
score_target_pseudo = 0.5 * (1 + (max_base_pseudo - max_incr_pseudo))
score_target_pseudo = torch.clamp(score_target_pseudo, 0, 1)
score_pred_pseudo = g_u(pseudo_feats)

loss_pseudo = MSE(score_pred_pseudo, score_target_pseudo)
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to generate two separate pseudo samples for each feature. Each pseudo represen-

tation is computed as:
Zpseudo = X - Wi + (1—a) Wnear, «€(0,0.5), (3.8)

where Wpear € {wj} in the base session, and Wpear € {W;, wj} in incremental ses-
sions. The target uncertainty score for each pseudo sample Zpgeudo is computed us-

ing the EUC-Score function defined in Eq. 4.5, in the same way as for real samples.

To promote diversity and improve generalization, we additionally inject Gaussian

noise into the pseudo samples:

ipseudo = Zpseudo +0, o~ N(O/ 0'21)- (3.9

These pseudo samples and their corresponding EUC scores are used to supervise
g" alongside real samples. This enables the uncertainty head to learn meaningful
gradients even in regions that are sparsely populated in the training data, particu-

larly near the decision boundary between base and incremental classes.

3.2.2 Uncertainty Score based Calibration

In Few-Shot Class-Incremental Learning (FSCIL), base classes are trained with
abundant labeled data, whereas incremental classes are introduced with only a few
labeled samples per class. This severe data imbalance causes the model to exhibit
higher prediction uncertainty and a higher misclassification rate on incremental
classes. To alleviate this issue, we propose an uncertainty-aware calibration method
that adjusts the cosine similarity-based classification scores using an uncertainty-

based scaling factor.
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Cosine Similarity-Based Prediction. In FSCIL, classification is typically performed
by computing the cosine similarity between the normalized feature representation
f and each class weight vector w; in a fixed Equiangular Tight Frame (ETF) classi-

fier. The predicted label is obtained by:
) = argmaxcos(f, w;)
However, such predictions do not account for the model’s uncertainty, especially

for incremental classes where the confidence is inherently lower.

Uncertainty Score Computation. We define an uncertainty score u(x) for a given
sample x as the normalized difference between its maximum cosine similarity with

the incremental class weights Winr and the base class weights Wiase:

14 [maxcos(f, Wpase) — max cos(f, Wincr)]
u(x) = 5

This score is high when the sample lies near the decision boundary or when its

alignment with both base and incremental classes is ambiguous.

Likelihood-Based Scaling. During each incremental session ¢ > 0, we estimate the
Gaussian distribution of uncertainty scores for both base and incremental groups
using training data. For base classes, the prototype memory is used to compute
class-wise uncertainty statistics, while incremental classes use the available few-
shot samples. Given a test sample x, its uncertainty likelihood A(x) is computed

under the corresponding distribution as:

Abase = N (1= 1u(x); 1y, 03),  Ainer = N (u(x); i, 07)
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where y and 0 are the mean and variance of the estimated uncertainty distribution
for the predicted group (base or incremental). To ensure a consistent interpretation
of uncertainty across all classes, we apply a transformation of 1 — u(x) for base
samples, since the uncertainty scoring function is designed to assign values close
to 1 for base-aligned features. This transformation guarantees higher values consis-

tently reflect high uncertainty across both base and incremental classes.

Score Calibration. Finally, we apply the normalized confidence weight w(x) to

adjust the cosine similarity scores. The calibrated score §; for class j is defined as:
§; = cos(f, wj) +a*xw(x),

where w(x) = ﬁ is the normalized likelihood-based confidence weight de-

rived from the uncertainty scores.
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Algorithm 2 Post-hoc Uncertainty-Aware Score Calibration

Input: Test feature f(x), ETF weights W;,, W;, group-wise uncertainty statistics

(1o, 03), (i, 07)
Output: Calibrated class scores §;

[1. Cosine Similarity Computation]

Compute cosine similarities between f(x) and base/incremental class weights:

maxcos(f,W,), maxcos(f, W;)

[2. Uncertainty Score Estimation]

Define post-hoc uncertainty score as:

_ 1+ [max cos(f, W,) — maxcos(f, W;)]
u(x) )

[3. Likelihood Computation]

Compute likelihood of u#(x) under both base and incremental uncertainty
distributions:

Abase = N(l - M(X),"Mb, sz)/ Ainer = N(u(x)/'.ui/ 0-12)
[4. Normalized Confidence Weight]

Define confidence weight w(x) for calibration as:

/\base

w(X) B )\base + /\incr

[5. Score Calibration]

Apply w(x) to adjust cosine scores:

§; = cos(f, wj) +a*w(x)

Predict class label:

§ = argmaxs;
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Chapter 4

Experiments

In this section, we first describe the datasets used for FSCIL in Section 4.1, followed
by evaluation metric used in FSCIL in Secition 4.2. Then, we provide detailed train-
ing configurations and implementation details in Section 4.3. Experimental results
are presented in Section 4.4, followed by an in-depth discussion and analysis in

Section 4.5.

4.1 Dataset

CIFAR100 [38] is a widely-used dataset comprising 60,000 color images (32 x 32 res-
olution) spanning 100 distinct object categories. Each class is composed of 500 train-
ing and 100 testing examples. Following prior FSCIL benchmarks [14], [16], [25], we
divide the dataset into 60 base classes and 40 novel classes. The novel classes are
further partitioned into 8 incremental sessions, with each session containing 5 new

classes and only 5 labeled samples per class (i.e., 5-way 5-shot learning).

minilmageNet is a subset of ImageNet [39] containing 100 classes, each with 600

images. All images are resized to 84 x84. We adopt the conventional FSCIL split: 60
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classes for base training and the remaining 40 classes for incremental learning. The
40 incremental classes are evenly distributed across 8 sessions, where each session

includes 5 novel classes with 5 training samples per class.

Caltech-UCSD Birds-200-2011 (CUB200) [40] is a fine-grained classification dataset
with 11,788 images across 200 bird species. Following the setting in previous liter-
ature, we use 100 classes for base training and the remaining 100 classes for in-
cremental sessions. These 100 incremental classes are split into 10 sessions, each
comprising a 10-way 5-shot classification task. All images are resized to 224 x224

resolution for training and evaluation.

Architectures Prior studies widely adopt ResNet-12, ResNet-18, and ResNet-20 [1]
for FSCIL experiments. We use ResNet-12 following [25]. For CUB-200, we use
ResNet-18 (pre-trained on ImageNet) following other studies. We adopt a two-layer
MLP block as the projection layer following [25] and add additional two-layer MLP

block for our uncertainty module.

4.2 Evaluation Metric

To enable fair comparison with previous FSCIL methods, we use average accuracy

(aAcc) and generalized average accuracy (§Acc) as evaluation metrics.

The equation for aAcc is as follows:

Vil a1 i j
|ynovel|Ai + Z;:Z Al

aAcc; = o :

‘ynovell + (Z - 1)

(4.1)

| Vi is the size of the labeling space of task 7, A{: denotes the accuracy on the class

set of task 7}, when the model has been trained up to the task 7;. In FSCIL settings,
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the class size ratio |:y|rii/|el| is often large (e.g., 12 for CIFAR-100 and miniImageNet, 10
for CUB-200). As a result, existing metrics such as aAcc and last-task average accuracy
(IAcc) tend to be dominated by the base class performance. Even when the model
performs poorly on the novel classes, these metrics still show a high value due to

the high weight of base accuracy. To overcome this limitation, Yourself [24] defined

a generalized accuracy metric gAcc as follows:

Ll a1 i ]
a |yn0ve1|Ai + Zj:z Al

Rz P
a D}novell + (l 1)

gAcci(a) =

(4.2)

gAcc generalizes the weighting factor a to any value in [0, 1]. The area under the

curve (AUC) of gAcc;(a) is computed as:

1
gAcci:/ gAcci(w) da 4.3)
0

For multiple sessions, the overall generalized accuracy is defined as the average

over all sessions:

gAcc = nl Y gAcc; (4.4)
t

4.3 Training implementation

We adopt distributed data parallelism for training, computing the overall loss us-
ing the aggregated global batch across all GPUs. Batch normalization layers are
synchronized to maintain consistent statistics across devices. We closely follow the
training configuration and hyperparameters used in NC-FSCIL [25]. In the base

session, we use a batch size of 256. For each incremental session, we adopt a batch
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size of 32, which includes both new class samples and previously stored intermedi-
ate features from memory. This differs from the original baseline implementation,
which used a smaller batch size of 8 and leveraged data-parallel training over 8

GPUs. In contrast, our implementation uses 2 GPUs.

For minilmageNet, the base session is trained for 500 epochs, while each incremen-
tal session is trained for 100 to 170 iterations. The learning rate is initialized to 0.25
for the base session and 0.025 for incremental updates. On CIFAR-100, we train for
200 epochs in the base session, and each incremental session is trained for 50 to 200
iterations. A fixed initial learning rate of 0.25 is used for both phases. For CUB-200,
the base session consists of 80 training epochs, and each incremental session runs
for 105 to 150 iterations. Learning rates are set to 0.025 for the base session and
0.05 for the incremental sessions. In all experiments, we employ cosine annealing
for learning rate scheduling and use SGD with momentum as the optimizer. Our
training platform consists of two RTX 3090 GPUs and an 8-core Intel(R) Core(TM)
i9-11900K CPU running at 3.50GHz. To ensure reproducibility, all experiments are
conducted with a fixed random seed. For the additional MLP used in our frame-
work, we adopt a two-layer architecture with a hidden dimension of 256. A ReLU
activation function is applied after the first layer, followed by a sigmoid activation
in the final layer to produce output values in the range of 0 to 1. In our pseudo-
sample generation module, we linearly interpolate between two ETF prototypes
using interpolation ratios ranging from 0.0 to 1.0 in steps of 0.05. To enhance diver-
sity, Gaussian noise with a standard deviation of 0.05 is added to the interpolated
features. We set the weight of the uncertainty loss to 0.1 throughout all training

stages.



28

Accuracy in each session (%) 1

Method aAcc  gAcc
0 1 2 3 4 5 6 7 8
NC-FSCIL (Baseline) 8233 77.09 7286 6859 6494 61.15 5938 56.58 54.86 66.42 56.99
Base Class Acc. 8233 79.72 7870 7728 7655 7408 7320 7213 7185 - -

Incr Class Acc. - 4560 37.80 33.80 30.10 30.12 31.73 2991 2937 - -
same hyperparameter 8233 76.12 7159 6741 6435 60.53 57.71 55.77 53.67 6549 5492

Base Class Acc. 82.33 81.88 80.60 78.93 78.08 7635 77.03 7723 76.03 - -
Incr Class Acc. - 700 1750 21.33 23.15 2256 19.07 1798 20.13 - -
Ours
+ UC module 82.88 77.62 7327 6732 64.72 6211 59.31 5721 5471 66.57 57.69
+ UC Calibration 82.88 77.25 7290 6641 64.74 6191 59.21 57.02 54.47 66.24 58.22
Base Class Acc. 82.88 81.02 7937 7477 7853 7472 7442 7492 7273 - -
Incr Class Acc. - 3420 35.60 33.00 2335 31.16 28.80 2634 27.07 - -

TABLE 4.1: Comparison with the baseline on CIFAR100 dataset.

We also report base vs. incremental class average accuracy at each

method. The results of NC-FSCIL are obtained by our own repro-
duction.

4.4 Results

44.1 Cifar100 Result

Table 4.1 presents the performance comparison on CIFAR100 between our pro-
posed method and the NC-FSCIL baseline. Since the original results of NC-FSCIL
could not be fully reproduced due to differences in GPU count and associated hy-
perparameters, we report both the best reproduced results and the ones obtained
under the same hyperparameter settings for a consistent comparison. Our first ob-
servation is that incorporating an additional MLP for uncertainty prediction does
not significantly degrade the baseline performance. In fact, the average aAcc and
gAcc slightly increase by 0.15% and 0.70%, respectively, compared to the baseline.
This suggests that the learned representations retain their discriminative power
while modeling uncertainty effectively. After applying our calibration strategy, we

observe a notable improvement in gAcc, achieving 1.23% higher performance than
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Accuracy in each session (%) T

Method aAcc  gAcc
0 1 2 3 4 5 6 7 8 9 10
NC-FSCIL (Baseline) 80.45 75.98 72.30 70.28 6817 65.16 6443 6325 60.66 60.01 59.44 67.28 61.56
Base Class Acc. 80.45 76.89 77.62 78.63 7723 7713 7685 7629 76.61 7594 7619 - -
Incr Class Acc. - 66.67 4541 4259 4588 4172 4411 4499 4116 42.66 43.07 - -
Ours
+ UC module 80.87 76.01 7297 69.93 67.83 6544 6487 6371 6147 60.36 59.67 67.55 61.86
+ UC Calibration 80.87 75.63 7297 70.14 6795 6544 6504 63.73 61.22 6036 60.06 67.30 62.55
Base Class Acc. 80.87 7591 7744 7786 7619 7650 7584 7556 7528 7455 7497 - -
Incr Class Acc. - 72.76 50.35 44.56 47.68 4378 4737 4719 4402 4490 4549 - -

TABLE 4.2: Comparison with the baseline on the CUB dataset. We
also report base vs. incremental class average accuracy at each
method.

the best baseline result. Moreover, except for sessions 3, 4, and 6, our method con-
sistently outperforms the baseline in all sessions. When comparing results under
the same hyperparameter configuration, our method exhibits slightly lower base
class accuracy, but significantly higher incremental class accuracy. Specifically, in
the final session (session 8), the base class accuracy drops by 3.3%, while the in-
cremental class accuracy improves by 6.96%, ultimately leading to better overall

performance in both aAcc and gAcc.

4.4.2 CUB200 Result

Table 4.2 presents a session-wise comparison between our method and the NC-
FSCIL baseline on the CUB-200 dataset. For this benchmark, we report the baseline
performance as presented in the original NC-FSCIL paper. First, we observe that
adding the uncertainty (UC) module yields a slight improvement in average accu-
racy, suggesting that our model is capable of producing representations that also
encode uncertainty information without degrading discriminative power. Second,
we observe consistent improvements in incremental class performance across all
sessions after applying our uncertainty-based calibration. Specifically, the average

base class accuracy across all sessions decreases only by 0.71%, while the average
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FIGURE 4.1: Mean uncertainty of the training set for each incremen-

tal session (1 to 10) on the CUB-200 dataset. The mean uncertainty

of base class samples remains consistently lower than that of incre-
mental class samples across all sessions.

incremental class accuracy improves by 2.46%. As a result, the overall accuracy
(aAcc) increases by 0.17%, and the generalized accuracy (gAcc) shows a notable im-
provement of 1.03%. Overall, although this calibration incurs a slight decrease in
base class accuracy, it significantly enhances incremental class accuracy by effec-
tively reducing their misclassification into base classes. As illustrated in Fig. 4.1,
the average uncertainty scores of base class samples remain consistently lower
than those of incremental class samples throughout all sessions. This discrepancy
enables our calibration strategy to assign larger correction weights to incremental

samples, thereby refining their decision scores.
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Accuracy in each session (%) T

Method aAcc  gAcc
0 1 2 3 4 5 6 7 8
NC-FSCIL (Baseline) 84.02 76.80 72.00 67.83 6635 64.04 6146 59.54 5831 67.81 60.93
Base Class Acc. 82.33 78.68 7598 74.10 7495 76.18 76.18 7555 7630 - -
Incr Class Acc. - 5420 48.10 42.73 4055 34.88 32.00 32.09 31.33 - -
Ours
+ UC module 8433 7635 7271 6823 6711 6441 62.67 60.39 59.01 68.35 61.77
+ UC Calibration 84.33 7528 7223 67.76 66.47 63.67 62.54 60.45 59.18 67.99 61.96
Base Class Acc. 8433 77.07 76.03 73.67 7447 7422 7510 7515 7547 - -
Incr Class Acc. - 53.80 49.40 44.13 4250 3836 3743 3526 3475 - -

TABLE 4.3: Comparison with the baseline on minilmageNet dataset.
We also report base vs. incremental class average accuracy at each
method.

4.4.3 MinilmageNet Result

Table 4.3 reports a session-wise performance comparison between our method and
the NC-FSCIL baseline on the minilmageNet dataset. As with CUB-200, the base-
line results are taken directly from the original NC-FSCIL publication. Initially, we
find that incorporating the uncertainty (UC) module slightly improves the average
accuracy. Moreover, the application of our uncertainty-driven calibration method
leads to consistent performance gains for incremental classes across all sessions.
While there is a minor drop in base class accuracy, the calibration process sub-
stantially reduces confusion between incremental and base classes, resulting in a
meaningful improvement in incremental class classification. In the final session,
the base class accuracy decreased by only 0.83%, whereas the incremental class ac-
curacy increased by 3.42%. Consequently, our method outperforms the baseline in
terms of aAcc by 0.18% and gAcc of 1.03%. Overall, these results validate that our
uncertainty-aware calibration framework generalizes well across datasets, offering
robust improvements in incremental learning scenarios with minimal cost to base

class performance.
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TABLE 4.4: Comparison of Estimated(Est.) UC Score and Post-Hoc
Scores across datasets.

(A) CIFAR100 (B) CUB200

Est. Post-Hoc Est. Post-Hoc

Base N(0.2857,0.084) A(0.23,0.054)  Base A(0.33,0.03) A(0.312,0.013)
Incr  N(0.3474,0.083) A(0.44,0.05)  Incr AN(0.269,0.026) A(0.426,0.008)

(¢) MinilmageNet

Est. Post-Hoc

Base AN(0.227,0.04) N(0.306,0.022)
Incr  A(0.403,0.04) N(0.449,0.019)

4.5 Discussion

4.5.1 Accuracy and Effectiveness of Uncertainty Module

In this section, we analyze how accurately the uncertainty module has been
trained—specifically, how closely the model-predicted uncertainty aligns with the
ground-truth (post-hoc) uncertainty scores. Table 4.4 presents the distributional
differences between the estimated and post-hoc uncertainty scores, evaluated on
the test sets of CIFAR100, CUB200, and minilmageNet. The results are reported
separately for base and incremental classes. Although the predicted uncertainty
does not perfectly match the post-hoc ground-truth, we observe that on CIFAR100
and minilmageNet, the model successfully captures the intended tendency: base
class samples consistently exhibit lower uncertainty than incremental class sam-
ples. In contrast, performance on CUB200 is relatively weaker. We conjecture that
this is due to the fine-grained nature of the CUB200 dataset and its significantly
smaller training size (only 5,000 images), compared to CIFAR100 (30,000 images)

and minilmageNet (36,000 images), which makes it more challenging for the model
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to learn reliable uncertainty estimates. The current uncertainty module is imple-
mented as a 2-layer MLP with a hidden dimension of 256 and a sigmoid activation
at the final layer. While this simple architecture yields meaningful trends, further
ablation studies are required to investigate whether a more sophisticated design

can provide more precise and robust uncertainty estimates.

We also discuss the effectiveness of our uncertainty module. As shown in all three
benchmark tables (Table 4.1, Table 4.2, and Table 4.3), we observe a slight improve-
ment in the overall accuracy when the uncertainty (UC) module is applied alone.
We conjecture that this is because the addition of the UC loss to the existing DR loss
encourages the model to learn a richer representation. While the DR loss primar-
ily focuses on aligning feature representations with specific ETF vectors, the UC
loss aims to model the relative alignment between base and incremental class ETF
groups. These two objectives are subtly different. For instance, consider two feature
vectors A and B that form the same angle with a particular ETF vector. Their DR
losses would be identical, but their EUC scores could differ. This suggests that the
uncertainty module captures additional discriminative information not reflected in
the DR loss alone. Further mathematical analysis of this difference may provide
deeper insights and theoretical justification for the effectiveness of the uncertainty

module, which we leave for future work.

4.5.2 EUC Score Distribution

In the base session, the model is trained on a large amount of base class data, and
the Dot Regression loss (DR loss) enforces strong alignment with the ground-truth
base ETF vectors. As a result, immediately after the base session, the uncertainty

scores of the base class training samples are heavily concentrated near zero. As
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FIGURE 4.2: Comparison of base and incremental uncertainty distri-
butions on CIFAR100. (A) and (B) show the train set distributions,
while (C) shows the test set distribution.

shown in Figure 4.2a, the distribution has a mean of 0.133 and a variance of 0.022,
indicating a sharp peak close to zero. In contrast, Figure 4.2b illustrates how this
distribution shifts as incremental sessions progress. Due to catastrophic forgetting,
the features of base class samples gradually deviate from their original ETF vec-
tors. In the final session, as shown in Figure 4.2b, the distribution becomes no-
ticeably skewed to the right, with a mean of 0.230 and a variance of 0.054. Lastly,
Figure 4.2c presents the uncertainty score distributions on the CIFAR100 test set,
comparing 6,000 base samples from the base session and 4,000 incremental sam-
ples from the incremental session. As expected, incremental class samples exhibit
higher uncertainty scores than base classes, since they are influenced by both base

and incremental ETF vectors.

4.5.3 Discrepancy Between Train and Test Uncertainty Distributions

In FSCIL settings, it is evident that the true distribution of uncertainty scores over
the test set differs from that of the training data used for calibration. However,
due to the inherent constraints of FSCIL—where previously seen training samples

cannot be used in incremental sessions—we are unable to directly access the true
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distribution of earlier class features. To address this, we leverage the idea of a com-
mon practice in prior FSCIL studies [24], [25], which use memory-based replay to
mitigate catastrophic forgetting. In our case, we adopt a memory buffer that stores
prototype vectors for each previously learned class. During each incremental ses-
sion, we estimate the uncertainty distributions for base classes using these stored
prototypes. Specifically, we calculate the mean and variance of their uncertainty
scores based on the model’s predictions over the prototypes. For the current ses-
sion’s new classes, we compute the mean and variance using the few-shot training
samples available (e.g., 5 classes x 5 shots = 25 images in CIFAR100). These statistics
are then used to fit Gaussian distributions that approximate the uncertainty score
distributions for both base and incremental class groups. Although we cannot ac-
cess the actual test-time uncertainty distribution, we can treat the test set as an ideal
reference, serving as an upper bound. While our method does not reach this upper
bound, it demonstrates that a practical approximation is achievable under the con-
straints of FSCIL. Future work may explore strategies to better approximate or even

approach this upper bound through more accurate estimation techniques.

4.5.4 Other Uncertainty Score Function

In addition to the subtraction-based formulation for uncertainty scoring, we also
experimented with an alternative ratio-based definition, as described in Equa-
tion 4.5. Unlike the original formulation, which quantifies the relative influence
of the base and incremental prototypes via their difference, this variant expresses
their contributions as a normalized ratio. In this formulation, features that are
strongly aligned with either the base or incremental ETF vector yield low un-
certainty scores, while features near the decision boundary-i.e., those equidistant

from both directions- produce scores approaching 1. A key distinction from the
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subtraction-based method lies in its directional behavior: in the original formu-
lation, uncertainty tends to increase as features shift from alignment with the in-
cremental ETF to the base ETFE. By contrast, the ratio-based score increases when
features are equally distant from both prototypes, emphasizing ambiguity at the
boundary. However, we observed that this ratio-based formulation often results an
instability during training. Specifically, the uncertainty head frequently collapsed
to output a near-constant value during incremental sessions, failing to capture
meaningful uncertainty variations. Consequently, we do not adopt this variant in

our final implementation.

max cos; (zx, W) + =

EUC-Score = min | max [ 0, min 1
max cos;(zx, Whyeo) + o7 + €
se)

. ]
max cos;(zx, W,
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4.5.5 Comparison with other FSCIL works

Table 4.5 presents a comparison of our proposed method with other existing FS-
CIL approaches on the minilmageNet benchmark. Among the methods compared,
CEC [16], TEEN [21], SAVC [23], NC-FSCIL [25], and Yourself [24] share a common
goal of enhancing stability, primarily by designing modules that operate during
the base stage to improve representation learning. Our approach also belongs to
this stability-focused category. Following the baseline NC-FSCIL [25], we adopt a
lightweight CNN-based backbone, specifically ResNet-12, to maintain consistency
in architecture and fair comparison. While several recent works employ more com-

plex backbones such as ViT, we demonstrate that our method achieves competitive
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TABLE 4.5: Comparison with other FSCIL works

Category Alias Method Stage Backbone minilmageNet
- TOPIC [13] neural-gas structure — CNN 39.64
CEC[16] attention module Base ResNet18 57.91
TEEN [21] Train free calibration Post-hoc ResNet18 61.76
Stability SAVC [23] Pseudo-classes Base ResNet18 66.66
NC-FSCIL [25] ETF vector Base ResNet12 67.81
Yourself [24] Recitfy ViT feature Base ViT 68.80
Ours Uncertainty module + Calibration Base ResNet12 67.99
Adaptability + subNet tuning [27] Binary Masking method Incremental ResNet18 60.86

performance even with a simple CNN backbone. Notably, our approach achieves
the highest accuracy (67.99%) among all CNN-based methods on minilmageNet,
surpassing the NC-FSCIL baseline (67.81%).framework.

4.5.6 Limitations

Although our method achieves consistent improvements, it still has some limita-
tions. First, due to the constraints of the FSCIL setting, the uncertainty distributions
used for calibration are estimated from class prototypes and a limited number of
few-shot samples, which does not fully capture the true uncertainty of the test data.
Second, the uncertainty module occasionally exhibits unstable behavior during in-
cremental sessions, sometimes collapsing to near-constant outputs. Future work
should explore more robust training strategies and perform extensive evaluations
under various hyperparameter settings. As discussed in Section 4.5.1, it is also
necessary to develop a more accurate uncertainty estimation model that can bet-
ter approximate the ground-truth distribution. Additionally, the obvious mismatch
observed on the CUB200 dataset suggests that further investigation is required to
address the challenges posed by smaller training sizes and potential overfitting or

underfitting issues.
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Chapter 5

Conclusion

5.1 Conclusion

In this work, we present an uncertainty-aware framework for Few-Shot Class-
Incremental Learning (FSCIL), where a model must learn new classes from limited
samples while retaining knowledge of previously learned ones. We propose a novel
uncertainty score that quantifies the alignment between learned representations
and class-specific ETF prototypes. This score is used to calibrate the model’s pre-
diction confidence in a class-aware manner, helping to reduce misclassifications of
incremental samples into base classes. To estimate uncertainty distributions for cal-
ibration, we utilize memory prototypes for previous classes and few-shot data for
current session classes, adhering to the constraints of the FSCIL setting. Extensive
experiments on CIFAR100 and other benchmarks demonstrate that our approach
improves overall model performance, primarily by achieving consistent gains in in-
cremental class accuracy across several sessions, despite a slight drop in base class
performance. Despite these improvements, our method has limitations. The esti-

mated uncertainty distributions may not perfectly approximate the true test-time
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distribution, and we observe that the predicted uncertainty scores do not always
align well with the supervised uncertainty loss signals. Additionally, when using
the division-based uncertainty scoring function, the uncertainty module occasion-

ally exhibits unstable behavior, such as collapsing to near-constant outputs.

Overall, our findings highlight the potential of integrating uncertainty estimation
into FSCIL pipelines and offer a promising direction for more reliable and cali-

brated incremental learning.
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