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1.1 Background

• Class-Incremental Learning (CIL)

• Deep neural networks have achieved remarkable success across a wide range of domains

• However, when trained on streaming data, they face challenges such as catastrophic forgetting

• CIL aims to continuously learn new classes while preserving knowledge of previous classes [1]

• Few-Shot Class-Incremental Learning (FSCIL)

• A more practical yet challenging subset of CIL, where new classes emerge with only a few samples [2]

• Specifically, the FSCIL task consists of…

a) A base session with sufficient training data

b) Multiple incremental sessions with an extremely limited number of samples
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1.1 Background: Research Trends in Few-Shot Class-Incremental Learning

• Stability-Focused (Forward compatible) FSCIL

• Aims for better separation of base classes to prepare for possible novel classes and

future updates during base session training

• Adopt an incremental-frozen framework and a prototype-based classifier structure

• Most approaches such as FACT [3] and NC-FSCIL [4] primarily focus on forward compatibility

Base classes
Incremental 

classes ❄

Backbone Network Prototypical Network

🔥

Figure 1.  Diagram of Stability-Focused Approach Figure 2. Diagram of Incremental-frozen, Prototype-based classifier framework   
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1.2 Motivation

• Performance Imbalance Problem

• Accuracy is dominated by base classes, whereas incremental classes show lower performance

• Asymmetrical misclassification problem

• Incremental class samples are frequently misclassified as base classes, but not vice versa

Figure 3.  Accuracy gap across sessions Figure 4. Confusion matrix at the final session 
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1.2 Motivation: Need for Uncertainty Quantification

• Uncertainty Quantification for FSCIL

• Incremental class samples represents near decision boundary

• Base classes have abundant dataset, whereas incremental classes have only limited dataset

• The model should be able to quantify its uncertainty for each class representation

Uncertainty
Module

“Low Uncertainty!”

“High Uncertainty!”

: Base Class

: Incr Class

Figure 5.  Diagram of uncertainty module
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1.2 Motivation: Need for Uncertainty Quantification

• Prediction Calibration using Uncertainty Score

• Adjust model predictions by incorporating uncertainty estimates for base and incremental class 

groups

• Assign higher predictive weight to incremental classes in proportion to their uncertainty scores

: Base Class

: Incr Class

Top 1

⋯

Top 1

⋯Prediction Calibration

Figure 6.  Diagram of prediction calibration



Related Works

8

2.1 Neural Collapse-Inspired Few-Shot Class Incremental Learning

• Neural collapse phenomenon

• In a well-trained classification model, the last-layer features of each class collapse into their class mean

• For a K-class classification, these vectors form a K-dimensional simplex equiangular tight frame (𝑬𝑻𝑭)†

• The ETF is a geometric structure that maximizes the pair-wise angles between all vectors [5]

Figure 7. Visualization of a neural collapse phenomenon (figure from [6]). Figure 8. Visualization of a neural collapse in the hyperplane (figure from [4]).

† See Appendix A for detailed explanation.
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2.1 Neural Collapse-Inspired Few-Shot Class Incremental Learning

• Neural collapse-Inspired FSCIL (NC-FSCIL)

• Yang et al. (2023) [4] pre-assigns an ETF classifier and aligns the features to this optimal structure

• Apply Dot-Regression(DR) Loss for alignment with ground-truth ETF vector

Figure 9. Neural Collapse-Inspired FSCIL Framework (figure from [4]).

†

† See Appendix B for detailed explanation.
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2.2 Objective

• Neural Collapse-Driven Uncertainty Estimation

• Based on the observation at Figure 4, we hypothesize the asymmetrical misclassification stems from

the difference in alignment of base and incremental prototypes.

• ETF vectors are pre-defined vectors for all classes

• We can mathematically quantify the alignment of a given feature with ETF vectors

• Base classes strongly aligns with base ETF vectors

• Incremental classes are influenced by both base, incremental ETF vectors

Figure 10. Diagram of Uncertainty Computation in the ETF Feature Space 
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2.2 Objective

I. Propose a novel uncertainty estimation strategy tailored for FSCIL, leveraging the ETF geometry to

quantify how feature representations align with base and incremental class prototypes

• Introduce an uncertainty estimation module on top of the NC-FSCIL [4] baseline

• Allows the model to output both class predictions and uncertainty scores for each input sample

II. Design a post-hoc calibration method to improve classification performance

• Leverage class-wise uncertainty distributions to re-weights predictions

• Experiments demonstrate our method shows better performance across all incremental sessions

“We aim to fulfill these objectives through uncertainty estimation and calibration,
thereby mitigating the asymmetric misclassification and prevalent bias

towards base classes in FSCIL." 
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3.1 Overview

⋮

Nearest 
ETF Search

ETF Prototype
Interpolation

θ

ETF Prototype Interpolation Module

Input
Feature

All ETF Vectors

Nearest ETF Search Module ETF Uncertainty Score

G.T Incr ETF

Nearest Incr  ETF

Nearest Base ETF

Decision Boundary

EUC Score 0 to 0.5

❄ : Frozen

🔥 : Learnable

🔥 🔥
❄

Figure 11. Overall framework of the proposed method. Red line indicate our proposed module integrated on top of the baseline.
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3.2 Neural Collapse-Driven Uncertainty Estimation

• Uncertainty Estimation Module

• Add additional projection head 𝑔𝑢 for uncertainty score u  ∈ 0, 1

• The representation 𝑧𝑖 is passed into 𝑔𝑢, which predicts the score 𝑢𝑖

• The EUC Loss (ℒunc) enforces the model to predict uncertainty score

⋮

Nearest 
ETF Search

ETF Prototype
Interpolation

❄ : Frozen

🔥 : Learnable

🔥 🔥
❄

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒDR + 𝜆 ∙ ℒ𝑢𝑛𝑐 ℒ𝑢𝑛𝑐 = 𝑀𝑆𝐸(𝑔𝑢( Ƹμ𝑖), EUC−Score( Ƹμ𝑖))
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3.2 Neural Collapse-Driven Uncertainty Estimation

• ETF Uncertainty Score (EUC Score)

• Supervision to the uncertainty projection module 𝑔𝑢

• It is designed to quantify the alignment of both base and incremental ETF vectors

𝐸𝑈𝐶 − 𝑆𝑐𝑜𝑟𝑒 = 
1 + 𝑚𝑎𝑥𝑐𝑜𝑠 𝑧,𝑊𝑏𝑎𝑠𝑒 −𝑚𝑎𝑥𝑐𝑜𝑠(𝑧,𝑊𝑖𝑛𝑐𝑟)

2

• Lower score indicates strong alignment with the incremental ETF prototypes

• Higher score indicates strong alignment with the base ETF prototypes

• Middle score indicates representations near the decision boundary

• For base class predictions, we interpret the score as 1− score to ensure consistency with the uncertainty interpretation.

ETF Uncertainty Score

G.T Incr ETF

Nearest Incr  ETF

Nearest Base ETF

Decision Boundary

EUC Score 0 to 0.5
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3.2 Neural Collapse-Driven Uncertainty Estimation

• Creating pseudo samples via Prototype Interpolation

• Due to the strong alignment induced by ℒDR , all features are prone to tightly clustered near their 

respective ETF prototypes

• This results in a behavior in 𝑔𝑢 to collapse to predicting only zero or one uncertainty for all inputs

• We use two modules to create pseudo samples to provide more discriminative uncertainty estimates

• Nearest ETF Search Module

• ETF Prototype Interpolation Module θ
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3.2 Neural Collapse-Driven Uncertainty Estimation

• Creating pseudo samples via Prototype Interpolation

• Nearest ETF Search Module

• Given an input feature, we retrieve the ETF vector

with the high cosine similarity

• For base session (t = 0), retrieve the most similar incremental ETF

• For incremental session (t > 0), retrieve the most similar base & incremental ETF

• ETF Prototype Interpolation Module

• Generate pseudo samples via interpolation

𝑧𝑝𝑠𝑒𝑢𝑑𝑜 = α ∙ 𝑤𝐺𝑇 + (1 - α) ∙ 𝑤𝑛𝑒𝑎𝑟 , α ∈ (0, 0.5)

• Inject Gaussian noise to promote diversity and generalization

𝑧𝑝𝑠𝑒𝑢𝑑𝑜 = 𝑧𝑝𝑠𝑒𝑢𝑑𝑜 + δ, δ ~ N(0, σ2𝐼)

Input
Feature

All ETF Vectors

Nearest ETF Search Module

ETF Prototype Interpolation Module
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3.3 Uncertainty Score based Calibration

• Cosine Similarity-Based Prediction

• Prediction is performed by computing following equation :

ො𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝑐𝑜𝑠 𝑓,𝑊𝑗

• Likelihood-Based Scaling

• During each incremental session ( t > 0), estimate the Gaussian distribution

of uncertainty scores for both base and incremental groups

• We use prototype memory for base class, few-shot samples for incremental class

⋮

Figure 12. Prototype memory for base class,
Few-shot sample for incremental class.

𝜆𝑏𝑎𝑠𝑒 = 𝑁(1 – u(x); μ𝑏,σ𝑏
2), 𝜆𝑖𝑛𝑐𝑟 = 𝑁(u(x); μ𝑖 ,σ𝑖

2), 
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3.3 Uncertainty Score based Calibration

• Likelihood-Based Scaling

• During each incremental session ( t > 0), estimate the Gaussian distribution

of uncertainty scores for both base and incremental groups

• We use prototype memory for base class, few-shot samples for incremental class

• ǁ𝑠𝑗 = 𝑐𝑜𝑠 𝑓,𝑊𝑗 + α ∙ w(x) , where w(x) is normalized confidence weight w(x) = 
𝜆𝑏𝑎𝑠𝑒

𝜆𝑏𝑎𝑠𝑒+𝜆𝑖𝑛𝑐𝑟

• Finally, predict class label ෝ𝒚, 𝑤ℎ𝑒𝑟𝑒 ො𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

ǁ𝑠𝑗

𝜆𝑏𝑎𝑠𝑒 = 𝑁(1 – u(x); μ𝑏,σ𝑏
2), 𝜆𝑖𝑛𝑐𝑟 = 𝑁(u(x); μ𝑖 ,σ𝑖

2), 
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4.1 Experimental Settings

• Datasets and data splits

• All experiments follow the data splits from [4] in a 5-shot setting (5 samples per incremental class)

• Evaluation metrics

• Average accuracy (𝑎𝐴𝑐𝑐), base accuracy (a𝐴𝑐𝑐𝑏), incremental accuracy (a𝐴𝑐𝑐𝑖)

• Generalized average accuracy (𝑔𝐴𝑐𝑐) [10]

Dataset

Number of class per session

Number of incremental sessions

Base session Incremental sessions

CIFAR-100 [7] 60 5 8

miniImageNet [8] 60 5 8

CUB-200 [9] 100 10 10

Table 1. Data splits in the FSCIL scenario for CIFAR-100 [7], miniImageNet [8], and CUB-200 [9]. 

† See Appendix C for detailed explanation.

†
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4.1 Experimental Settings

• Implementation details

• The backbone network and initial hyper-parameter settings are adopted from NC-FSCIL [4]

• We adopt batch size of 32 at incremental session, 0.1 learning rate for uncertainty loss

• We use fine-tune learning rate of 0.02 at incremental session of CIFAR-100

• We re-implement the original baseline at our own reproduction 

Dataset Backbone

Batch size

Finetuning LR

Base session
Incremental 

sessions

CIFAR-100 [7] ResNet-12 256 8 -> 32 0.3 -> 0.02

miniImageNet [8] ResNet-12 256 8 -> 32 0.05

CUB-200 [9] ResNet-18 256 8 -> 32 0.01

Table 2. Implementation details and commonly used hyperparameters in the FSCIL research. 

† See Appendix D for detailed explanation.

†



Experiments

4.2.1 CIFAR-100 Results

Methods
Accuracy in each session (%) ↑

0 1 2 3 4 5 6 7 8 Aacc Gacc

NC-FSCIL (Baseline) 82.33 77.09 72.86 68.59 64.94 61.15 59.38 56.58 54.86 66.42 56.99

Base Class Acc 82.33 79.72 78.70 77.28 76.55 74.08 73.20 72.13 71.85 - -

Incr Class Acc - 45.60 37.80 33.80 30.10 30.12 31.73 29.91 29.37

Base Class Acc
(same hyperparameter)

82.33 81.88 80.60 78.93 78.08 76.35 77.03 77.23 76.03 - -

Incr Class Acc
(same hyperparameter)

- 7.00 17.50 21.33 23.15 22.56 19.07 17.98 20.13 - -

Ours

+ UC Module 82.88 77.62 73.27 67.32 64.72 62.11 59.31 57.21 54.71 66.57 57.69

+ UC Calibration 82.88 77.25 72.90 66.41 64.74 61.91 59.21 57.02 54.47 66.24 58.22

Base Class Acc 82.88 81.02 79.37 74.77 78.53 74.72 74.42 74.92 72.73 - -

Incr Class Acc - 34.20 35.60 33.00 23.35 31.16 28.80 26.34 27.07 - -

Table 3. Comparison with the baseline on CIFAR-100. We report base/incr/average acc(Aacc)/generalized acc(Gacc).

† See Appendix E for detailed explanation.

†
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4.2.2 miniImageNet Results

Methods
Accuracy in each session (%) ↑

0 1 2 3 4 5 6 7 8 Aacc Gacc

NC-FSCIL (Baseline) 84.02 76.80 72.00 67.83 66.35 64.04 61.46 59.54 58.31 67.81 60.93

Base Class Acc 84.02 78.68 75.98 74.10 74.95 76.18 76.18 75.55 76.30 - -

Incr Class Acc - 54.20 48.10 42.73 40.55 34.88 32.00 32.09 31.33

Ours

+ UC Module 84.33 76.35 72.71 68.23 67.11 64.41 62.67 60.39 59.01 68.35 61.77

+ UC Calibration 84.33 75.28 72.23 67.76 66.47 63.67 62.54 60.45 59.18 67.99 61.96

Base Class Acc 84.33 77.07 76.03 73.67 74.47 74.22 75.10 75.15 75.47 - -

Incr Class Acc - 53.80 49.40 44.13 42.50 38.36 37.43 35.26 34.75 - -

Table 4. Comparison with the baseline on miniImageNet. We report base/incr/average acc(Aacc)/generalized acc(Gacc).

†

† See Appendix E for detailed explanation.
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4.2.3 CUB200 Results

Methods
Accuracy in each session (%) ↑

0 1 2 3 4 5 6 7 8 9 10 Aacc Gacc

NC-FSCIL (Baseline) 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 67.28 61.56

Base Class Acc 80.45 76.89 77.62 78.63 77.23 77.13 76.85 76.29 76.61 75.94 76.19

Incr Class Acc - 66.67 45.41 42.59 45.88 41.72 44.11 44.99 41.16 42.66 43.07

Ours

+ UC Module 80.87 76.01 72.97 69.93 67.83 65.44 64.87 63.71 61.47 60.36 59.67 67.55 61.86

+ UC Calibration 80.87 75.63 72.97 70.14 67.95 65.44 65.04 63.73 61.22 60.36 60.06 67.30 62.55

Base Class Acc 80.87 75.91 77.44 77.86 76.19 76.50 75.84 75.56 75.28 74.55 74.97

Incr Class Acc - 72.76 50.35 44.56 47.68 43.78 47.37 47.19 44.02 44.90 45.49

Table 5. Comparison with the baseline on CUB200. We report base/incr/average acc(Aacc)/generalized acc(Gacc).

†

† See Appendix E for detailed explanation.
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4.2.4 Overall Results

• Analysis of Results

• Consistent improvements in the generalized average accuracy (g𝑨𝒄𝒄) across all benchmark datasets

• Our method slightly sacrifices base class accuracy in favor of enhancing incremental class accuracy

• For CIFAR-100, difference in experimental settings such as number of GPU, resulting unfair comparison

• Under same experimental environment, our method outperforms the baseline

Table 6. Overall results of performance difference of three benchmarks. 

Dataset Final session
Average

Base Class

Average
Incremental 

Class Aacc Gacc

CIFAR-100 [7] 0.39% drop 1.21% drop 11.35% gain 0.18% drop 1.23% gain

miniImageNet [8] 0.87% gain 0.71% drop 2.46% gain 0.17% gain 1.03% gain

CUB-200 [9] 0.62% gain 0.80% drop 2.98% gain 0.02% gain 0.99% gain
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4.3 Discussion

• Comparison between Predicted and Post-hoc EUC Scores

• Although the predicted uncertainty does not perfectly match the post-hoc uncertainty score,

for CIFAR100 and miniImageNet, the model successfully captures the tendency of base class exhibiting lower uncertainty 

than incremental samples

• We conjecture CUB200 mismatch is due to significantly smaller training size (1/6 size)

• Possibility of over/under fitting -> need extensive experiments

(a) CIFAR100

Model G.T

Base 𝑁(0.286, 0.084) 𝑁(0.23, 0.053)

Incremental 𝑁(0.347, 0.083) 𝑁(0.44, 0.05)

Model G.T

Base 𝑁(0.227, 0.04) 𝑁(0.306, 0.022)

Incremental 𝑁(0.403, 0.04) 𝑁(0.449, 0.019)

Model G.T

Base 𝑁(0.33, 0.03) 𝑁(0.312, 0.013)

Incremental 𝑁(0.269, 0.026) 𝑁(0.426, 0.008)

Table 7. Comparison of prediction UC score and Post-hoc UC score.

(b) miniImageNet (c) CUB200
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4.3 Discussion

• Uncertainty Score Distribution of Base/Incremental Class

• After the base session, uncertainty scores of base samples are highly concentrated near zero

• As session progress, the distribution gradually shifts due to the influence of incremental classes

(i.e., catastrophic forgetting)

• Incremental samples exhibit consistently higher uncertainty scores compared to base samples

• This supports our hypothesis that incremental samples are more influenced by both base and incremental prototypes

Figure 13. Comparison of base and incremental uncertainty distributions on CIFAR100. (a) and (b) shows train set distribution, while (c) shows the test set distribution.

(a) Session 0 (b) Session 9 (c) Session 9
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4.3 Discussion

• Prediction Calibration for Base and Incremental samples

• The mean uncertainty of incremental class samples remains consistently higher than that of base class samples

across all sessions

• This enables our calibration strategy to assign larger correction weights to incremental samples,

thereby refining the prediction

Figure 14. Mean uncertainty of the training set for each session on the CUB-200 dataset.
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5.1 Limitation and Further Works

• Discrepancy between Train and Test Uncertainty EUC(ETF-Uncertainty) score Distribution

• It is evident that the true distribution of uncertainty scores differs from that of the training data used for calibration

• From Figure 12, we can only estimate the true uncertainty as a practical approximation under FSCIL constraints

• We can consider the actual test uncertainty distribution as an upper bound

• Further extensive work to match the upper bound is required.

• Unstable Uncertainty Module

• More experiments with CIFAR100 required (fair comparison with baseline)

• Additional tuning is required to better align with the post-hoc EUC scores
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5.2 Conclusion

• Motivation

• We aim to address the challenge of asymmetric misclassification in FSCIL, where incremental samples are often

misclassified into base classes

• Method Summary

• We propose an uncertainty-aware framework for Few-Shot Class-Incremental Learning (FSCIL)

• A novel uncertainty score is introduced, base on alignment with class-specific ETF prototypes

• We design a post-hoc calibrate scheme to adjust prediction confidence based on uncertainty score

• Experimental Results

• We reduce the prevalent bias toward base classes, leading to more balanced predictions

• We enhance incremental class performance across all datasets, achieve notable improvements in generalized average 

accuracy (𝑔𝐴𝑐𝑐)
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A. Simplex Equiangular Tight Frame (ETF)

• A geometric structure formed at the terminal phase of training

• A simplex ETF refers to a matrix that is composed of K vectors 𝐸 = 𝑒1, … , 𝑒𝑘 ∈ ℝ𝑑 𝑥 𝐾 that satisfies:

𝐸 =
𝐾

𝐾 − 1
𝑈 𝐼𝐾 −

1

𝐾
1𝐾1𝐾

T

• 𝑈 ∈ ℝ𝑑 𝑥 𝐾 is an orthogonal matrix that satisfies 𝑈𝑇𝑈 = 𝐼𝐾 , and 1𝐾 is an all-ones vector

• All column vectors in 𝐸 have the same ℓ2 norm and any pair satisfies:

𝑒𝑖
𝑇𝑒𝑗 = ቐ

1 𝑖𝑓 𝑖 = 𝑗

−
1

𝐾 − 1
𝑖𝑓 𝑖 ≠ 𝑗
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B. Dot-Regression (DR) Loss

• Elimination of the push term

• The gradient of CE loss is composed of a pull term and a push term

• pull term drives the feature into its classifier prototype of the same class

• push term pushes the feature away from the prototypes of different classes

• DR loss includes only the pull gradients assuming the optimal prototypes are given by the ETF:

ℒ ොμ𝑖 , ෡𝑊𝐸𝑇𝐹 =
1

2
ෝ𝑤𝑦𝑖
𝑇 ොμ𝑖 − 1

2

• ොμ𝑖 is the normalized feature, ෡𝑊𝐸𝑇𝐹 is the ETF matrix, and ෝ𝑤𝑦𝑖
𝑇 is the prototype in E for class 𝑦𝑖
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C. Generalized Average Accuracy

• Complement metric for novel-class performance [10]

• Existing 𝑎𝐴𝑐𝑐, 𝑙𝐴𝑐𝑐 is dominated by the base-class performance, having bias towards base-class regardless of the 

inferior performance on the novel class

• Existing 𝑎𝐴𝑐𝑐 is written by:

𝑎𝐴𝑐𝑐𝑖 =

𝑦𝑖
𝑦𝑛𝑜𝑣𝑒𝑙

𝐴𝑖
1 + σ𝑗=2

𝑖 𝐴𝑖
𝑗

𝑦𝑖
𝑦𝑛𝑜𝑣𝑒𝑙

+ (𝑖 − 1)

• 𝑦𝑖 is the size of the labeling space of task 𝛵𝑖, 𝐴𝑖
𝑗

denotes the accuracy on the class set of task 𝛵𝑗 , when the model 

has been trained up to the task 𝛵𝑖

•
𝑦𝑖

𝑦𝑛𝑜𝑣𝑒𝑙
is too large in the FSCIL settings (𝑒. 𝑔.

𝑦𝑖

𝑦𝑛𝑜𝑣𝑒𝑙
= 12 for CIFAR-100 and miniImageNet, 10 for CUB-200)
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C. Generalized Average Accuracy

• Complement metric for novel-class performance [10]

• To overcome the limitations of existing 𝑎𝐴𝑐𝑐, 𝑙𝐴𝑐𝑐, we define the generalized accuracy (𝑔𝐴𝑐𝑐) as:

𝑔𝐴𝑐𝑐𝑖 α =
α

𝑦𝑖
𝑦𝑛𝑜𝑣𝑒𝑙

𝐴𝑖
1 + σ𝑗=2

𝑖 𝐴𝑖
𝑗

α
𝑦𝑖

𝑦𝑛𝑜𝑣𝑒𝑙
+ (𝑖 − 1)

• 𝑔𝐴𝑐𝑐 generalizes the α to any rational numbers in [0,1]

• The area under the curve (AUC) of 𝑔𝐴𝑐𝑐𝑖 α is defined as:

𝑔𝐴𝑐𝑐𝑖 = න
0

1

𝑔𝐴𝑐𝑐𝑖 α 𝑑α

• For multiple tasks, we average the 𝑔𝐴𝑐𝑐𝑖 for each task and get an overall metric 𝑔𝐴𝑐𝑐:

𝑔𝐴𝑐𝑐 =
1

𝑛𝑡
෍

𝑖

𝑛𝑡

𝑔𝐴𝑐𝑐𝑖
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D. Training Implementation

• NC-FSCIL [4] Baseline

• We follow the same hyperparameter settings except:

• Fine-tuning learning rate (0.3 → 0.02) at CIFAR-100

• Samples per GPU (8 → 32)

• Uncertainty Module

• We adopt two-layer MLP with a hidden dimension of 256.

• A ReLU activation function is used and a sigmoid activation at the final layer

• We use Gaussian noise with a standard deviation of 0.05 to the interpolated features

• We use uncertainty loss of 0.1 throughout all training stages.

• Prediction Calibration

• We use value of 0.05 for α in the re-weighting process
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E. Effectiveness of Uncertainty Module

• Slight improvement in overall accuracy when UC module applied alone

• We conjecture the additional UC loss applied in addition to the DR loss

• DR loss primarily focuses on aligning with G.T ETF vectors

• UC loss aims to model the relative alignment between Base and Incremental ETF

• Consider two feature vectors A,B

• The DR loss is identical, whereas EUC scores differ

Figure 15. Diagram of difference between DR loss and EUC score in measuring alignment with ETF prototypes 


