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Introduction

1.1 Background

« Class-Incremental Learning (CIL)
« Deep neural networks have achieved remarkable success across a wide range of domains
- However, when trained on streaming data, they face challenges such as catastrophic forgetting

« CIL aims to continuously learn new classes while preserving knowledge of previous classes [1]

« Few-Shot Class-Incremental Learning (FSCIL)
« A more practical yet challenging subset of CIL, where new classes emerge with only a few samples (2]
« Specifically, the FSCIL task consists of...

a) A base session with sufficient training data

b) Multiple incremental sessions with an extremely limited number of samples




Introduction

1.1 Background: Research Trends in Few-Shot Class-Incremental Learning

» Stability-Focused (Forward compatible) FSCIL

Aims for better separation of base classes to prepare for possible novel classes and

future updates during base session training

Adopt an incremental-frozen framework and a prototype-based classifier structure

« Most approaches such as FACT [3] and NC-FSCIL [4] primarily focus on forward compatibility
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Figure 1. Diagram of Stability-Focused Approach Figure 2. Diagram of Incremental-frozen, Prototype-based classifier framework



Introduction

1.2 Motivation

« Performance Imbalance Problem

« Accuracy is dominated by base classes, whereas incremental classes show lower performance

« Asymmetrical misclassification problem
« Incremental class samples are frequently misclassified as base classes, but not vice versa
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Introduction

1.2 Motivation: Need for Uncertainty Quantification

« Uncertainty Quantification for FSCIL

« Incremental class samples represents near decision boundary

« Base classes have abundant dataset, whereas incremental classes have only limited dataset

« The model should be able to quantify its uncertainty for each class representation
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Introduction

1.2 Motivation: Need for Uncertainty Quantification

 Prediction Calibration using Uncertainty Score
« Adjust model predictions by incorporating uncertainty estimates for base and incremental class
groups

« Assign higher predictive weight to incremental classes in proportion to their uncertainty scores
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Figure 6. Diagram of prediction calibration




Related Works

2.1 Neural Collapse-Inspired Few-Shot Class Incremental Learning

» Neural collapse phenomenon
« In a well-trained classification model, the last-layer features of each class collapse into their class mean
« For a K-class classification, these vectors form a K~dimensional simplex equiangular tight frame (ETF)Jr

« The ETF is a geometric structure that maximizes the pair-wise angles between all vectors [5]

Figure 7. Visualization of a neural collapse phenomenon (figure from [6]). Figure 8. Visualization of a neural collapse in the hyperplane (figure from [4]).

t See Appendix A for detailed explanation.



Related Works

2.1 Neural Collapse-Inspired Few-Shot Class Incremental Learning

« Neural collapse-Inspired FSCIL (NC-FSCIL)
« Yang et al. (2023) [4] pre-assigns an ETF classifier and aligns the features to this optimal structure

« Apply Dot-Regression(DR) Loss" for alignment with ground-truth ETF vector
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Related Works

2.2 Objective

Neural Collapse-Driven Uncertainty Estimation

Based on the observation at Figure 4, we hypothesize the asymmetrical misclassification stems from
the difference in alignment of base and incremental prototypes.

ETF vectors are pre-defined vectors for all classes

We can mathematically quantify the alignment of a given feature with ETF vectors
Base classes strongly aligns with base ETF vectors

Incremental classes are influenced by both base, incremental ETF vectors
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Related Works

2.2 Objective

. Propose a novel uncertainty estimation strategy tailored for FSCIL, leveraging the ETF geometry to

quantify how feature representations align with base and incremental class prototypes

* Introduce an uncertainty estimation module on top of the NC-FSCIL [4] baseline

« Allows the model to output both class predictions and uncertainty scores for each input sample
ll. Design a post-hoc calibration method to improve classification performance

« Leverage class-wise uncertainty distributions to re-weights predictions

«  Experiments demonstrate our method shows better performance across all incremental sessions

“We aim to fulfill these objectives through uncertainty estimation and calibration,
thereby mitigating the asymmetric misclassification and prevalent bias
towards base classes in FSCIL.”



Methods

3.1 Overview
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3.2 Neural Collapse-Driven Uncertainty Estimation

« Uncertainty Estimation Module
« Add additional projection head g* for uncertainty score v € [0, 1]
« The representation z; is passed into g%, which predicts the score u;
« The EUC Loss (L) enforces the model to predict uncertainty score

Liotat = Lor+ A+ Lync  Lunc = MSE(g" (@), £UC=5core(p;))
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Methods

3.2 Neural Collapse-Driven Uncertainty Estimation

« ETF Uncertainty Score (EUC Score)
« Supervision to the uncertainty projection module g*

« It is designed to quantify the alignment of both base and incremental ETF vectors

/ ETF Uncertainty Score \

1+ [maxcos(z,W —maxcos(z,W; W,
FUC — Score = [ ( basez) ( incr)l [\W_/_\i\
« Lower score indicates strong alignment with the /ncremental ETF prototypes P
* Higher score indicates strong alignment with the base ETF prototypes K

« Middle score indicates representations near the decision boundary

» For base class predictions, we interpret the score as 7- score to ensure consistency with the uncertainty interpretation.
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3.2 Neural Collapse-Driven Uncertainty Estimation

« Creating pseudo samples via Prototype Interpolation

Due to the strong alignment induced by <or, all features are prone to tightly clustered near their

respective ETF prototypes
This results in a behavior in g* to collapse to predicting only zero or one uncertainty for all inputs

We use two modules to create pseudo samples to provide more discriminative uncertainty estimates
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Methods

3.2 Neural Collapse-Driven Uncertainty Estimation

« Creating pseudo samples via Prototype Interpolation

/ Nearest ETF Search Module \

* Nearest ETF Search Module
o . £ nm
« Given an input feature, we retrieve the ETF vector T~ W, W,
(oooog)
with the high cosine similarity AN ETF Vectors
* For base session (¢ = 0), retrieve the most similar incremental ETF - /
* For incremental session (¢ > 0), retrieve the most similar base & incremental ETF
« ETF Prototype Interpolation Module
» Generate pseudo samples via interpolation 7 TS

e,
Zpseudo = A Wgr * (7T-a): Whear, @€ (0, 0.5)
» Inject Gaussian noise to promote diversity and generalization

Zpseudo = Zpseudo T 6, 6 ~ MO, 021)




Methods

3.3 Uncertainty Score based Calibration

» Cosine Similarity-Based Prediction m ’

« Prediction is performed by computing following equation : { ‘\\ E//'

9 =arg max co s(f, ;) g, ‘{\'\'\:«: ’l:'l\\‘

« Likelihood-Based Scaling _

» During each incremental session ( ¢t > 0), estimate the Gaussian distribution WETF

of uncertainty scores for both base and incremental groups
« We use prototype memory for base class, few-shot samples for incremental class J—
jbase = N(7 — ux); Mp, 0%)/ jincr = N(u(x); Mi, 012)/ % mfi]ﬂ

Figure 12. Prototype memory for base class,
Few-shot sample for incremental class.



Methods

3.3 Uncertainty Score based Calibration

 Likelihood-Based Scaling
» During each incremental session ( £ > 0), estimate the Gaussian distribution
of uncertainty scores for both base and incremental groups

«  We use prototype memory for base class, few-shot samples for incremental class

Apase = N(T = ux); Mp, 0129)/ Ainer = N (ux); HMi, 0'12)/

base

« 5 =cos(f,W;) + a- wix), where w(x) is normalized confidence weight w(x) = T —

* Finally, predict class label y, where y = arg max §;
Jj




Experiments

4.1 Experimental Settings

« Datasets and data splits

« All experiments follow the data splits from [4] in a 5-shot setting (5 samples per incremental class)

Number of class per session

Dataset Number of incremental sessions
Base session Incremental sessions
CIFAR-100 [7] 60 5 8
minimageNet [8] 60 5 8
CUB-200 [9] 100 10 10

Table 1. Data splits in the FSCIL scenario for CIFAR-100 [7], minimageNet [8], and CUB-200 [9].

e Evaluation metrics
» Average accuracy (aAcc), base accuracy (aAccp), incremental accuracy (aAcc;)

» Generalized average accuracy (gAcc) [10] T

t See Appendix C for detailed explanation.



Experiments

4.1 Experimental Settings

« Implementation details
« The backbone network and initial hyper-parameter settings are adopted from NC-FSCIL [4]
« We adopt batch size of 32 at incremental session, 0.7 learning rate for uncertainty loss

« We use fine-tune learning rate of 0.02 at incremental session of CIFAR-100

«  We re-implement the original baseline at our own reproduction T
Batch size
Dataset Backbone Finetuning LR
. Incremental
Base session .
sessions
CIFAR-100 [7] ResNet-12 256 8->32 0.3->002
minimageNet [8] | ResNet-12 256 8-> 32 0.05
CUB-200 [9] ResNet-18 256 8-> 32 0.01

Table 2. Implementation details and commonly used hyperparameters in the FSCIL research.

t See Appendix D for detailed explanation.



Experiments

4.2.1 CIFAR-100 Results

Accuracy in each session (%) 1

Methods
0 1 2 3 4 5 6 7 8 Aacc Gacc
NC-FSCIL (Base“ne) 82.33 77.09 72.86 68.59 64.94 61.15 59.38 56.58 54.86 66.42 56.99
Base Class Acc 82.33 79.72 78.70 77.28 76.55 74.08 73.20 7213 71.85 - -
Incr Class Acc = 45.60 37.80 33.80 30.10 30.12 31.73 29.91 29.37
Base Class Acc 82.33 81.88 80.60 78.93 78.08 76.35 77.03 77.23 76.03 - -
(same hyperparameter)
Incr Class Acc - 7.00 17.50 21.33 23.15 22.56 19.07 17.98 20.13 - -
(same hyperparameter)
Ours
+ UC Modu|eT 82.88 77.62 73.27 67.32 64.72 62.11 59.31 57.21 54.71 66.57 57.69
+ UC Calibration 82.88 77.25 72.90 66.41 64.74 61.91 59.21 57.02 54.47 66.24 58.22
Base Class Acc 82.88 81.02 79.37 T4.77 78.53 74.72 74.42 74.92 72.73 - -
Incr Class Acc = 34.20 35.60 33.00 23.35 31.16 28.80 26.34 27.07 - -

Table 3. Comparison with the baseline on CIFAR-100. We report base/incr/average acc(Aacc)/generalized acc(Gacc).

t See Appendix E for detailed explanation.



Experiments

4.2.2 minilmageNet Results

Accuracy in each session (%) 1t

Methods
0 1 2 3 4 5 6 7 8 Aacc  Gacc
NC-FSCIL (Baseline) 8402 7680 7200 6783 6635 6404 6146 5954 5831 6781 6093
Base Class Acc 8402 7868 7598 7410 7495 76.18 76.18 7555 76.30 - -
Incr Class Acc - 5420 4810 4273 4055 3488 3200 3209 3133
Ours
+ UC Module® 8433 7635 7271 6823 6711 6441 6267 6039 5901 6835 61.77
+ UC Calibration 8433 7528 7223 6776 66.47 6367 6254 6045 59.18 67.99 61.96
Base Class Acc 8433 77.07 76.03 7367 7447 7422 7510 7515 7547 - -
Incr Class Acc - 53.80 4940 4413 4250 3836 3743 3526 3475 - -

Table 4. Comparison with the baseline on minilmageNet. We report base/incr/average acc(Aacc)/generalized acc(Gacc).

t See Appendix E for detailed explanation.



Experiments

4.2.3 CUB200 Results

Accuracy in each session (%) 1t

Methods
0 1 2 3 4 5 6 7 8 S 10 Aacc  Gacc
NC-FSCIL (Baseline) 8045 7598 7230 70.28 6817 6516 6443 6325 60.66 60.01 5944 6728 61.56
Base Class Acc 8045 7689 7762 7863 7723 7713 7685 7629 7661 7594 76.19
Incr Class Acc - 66.67 4541 4259 4588 4172 4411 4499 4116 4266 43.07
Ours
+ UC Module T 80.87 76.01 7297 6993 6783 6544 6487 6371 6147 6036 5967 6755 61.86
+ UC Calibration 80.87 7563 7297 7014 6795 65.44 65.04 63.73 6122 6036 60.06 67.30 62.55
Base Class Acc 80.87 7591 7744 7786 7619 7650 7584 7556 7528 7455 7497
Incr Class Acc - 7276 5035 4456 4768 4378 4737 4719 4402 4490 4549

Table 5. Comparison with the baseline on CUB200. We report base/incr/average acc(Aacc)/generalized acc(Gacc).

t See Appendix E for detailed explanation.



Experiments

4.2.4 Overall Results

« Analysis of Results
» Consistent improvements in the generalized average accuracy (gAcc) across all benchmark datasets

Our method slightly sacrifices base class accuracy in favor of enhancing incremental class accuracy
For CIFAR-100, difference in experimental settings such as number of GPU, resulting unfair comparison

« Under same experimental environment, our method outperforms the baseline

Average Average
Dataset Final session Incremental
Base Class
Class Aacc Gacc
CIFAR-100 [7] 0.39% drop 1.21% drop 11.35% gain 0.18% drop 1.23% gain
minimageNet [8] 0.87% gain 0.71% drop 2.46% gain 0.17% gain 1.03% gain
CUB-200 [9] 0.62% gain 0.80% drop 2.98% gain 0.02% gain 0.99% gain

Table 6. Overall results of performance difference of three benchmarks.



Experiments

4.3 Discussion

« Comparison between Predicted and Post-hoc EUC Scores

Although the predicted uncertainty does not perfectly match the post-hoc uncertainty score,

for CIFAR100 and minilmageNet the model successfully captures the tendency of base class exhibiting lower uncertainty
than incremental samples

We conjecture CUB200 mismatch is due to significantly smaller training size (1/6 size)

« Possibility of over/under fitting -> need extensive experiments

Model G.T Model G.T Model G.T

Base | N (0286, 0.084) N(0.23 0.053) Base | N(@0Z227, 0.04) N (0306, 0.022) Base N33 003) | N@©.312 0.015)

Incremental | N (@347, 0.083)] N (044 0.05) Incremental | N@0.403 0.04) | N (0.449 0.079) Incremental | N @©0.269 0.026)| N (0.426, 0.008)

(a) CIFAR100 (b) minilmageNet (c) CUB200

Table 7. Comparison of prediction UC score and Post-hoc UC score.



Experiments

4.3 Discussion

Uncertainty Score Distribution of Base/Incremental Class

After the base session, uncertainty scores of base samples are highly concentrated near zero

As session progress, the distribution gradually shifts due to the influence of incremental classes
(i.e., catastrophic forgetting)

Incremental samples exhibit consistently higher uncertainty scores compared to base samples

This supports our hypothesis that incremental samples are more influenced by both base and incremental prototypes
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Figure 13. Comparison of base and incremental uncertainty distributions on CIFAR100. (a) and (b) shows train set distribution, while (c) shows the test set distribution.




Experiments

4.3 Discussion

 Prediction Calibration for Base and Incremental samples

The mean uncertainty of incremental class samples remains consistently higher than that of base class samples
across all sessions

This enables our calibration strategy to assign larger correction weights to incremental samples,
thereby refining the prediction
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Figure 14. Mean uncertainty of the training set for each session on the CUB-200 dataset.




Conclusion

5.1 Limitation and Further Works

« Discrepancy between Train and Test Uncertainty EUC(ETF-Uncertainty) score Distribution
« It is evident that the true distribution of uncertainty scores differs from that of the training data used for calibration
« From Figure 72, we can only estimate the true uncertainty as a practical approximation under FSCIL constraints
« We can consider the actual test uncertainty distribution as an upper bound

» Further extensive work to match the upper bound is required.

« Unstable Uncertainty Module

* More experiments with CIFAR100 required (fair comparison with baseline)

« Additional tuning is required to better align with the post-hoc EUC scores




Conclusion

5.2 Conclusion

« Motivation
«  We aim to address the challenge of asymmetric misclassification in FSCIL, where incremental samples are often

misclassified into base classes

« Method Summary
« We propose an uncertainty-aware framework for Few-Shot Class-Incremental Learning (FSCIL)
« A novel uncertainty score is introduced, base on alignment with class-specific ETF prototypes

« We design a post-hoc calibrate scheme to adjust prediction confidence based on uncertainty score

« Experimental Results
« We reduce the prevalent bias toward base classes, leading to more balanced predictions
« We enhance incremental class performance across all datasets, achieve notable improvements in generalized average

accuracy (gAcc)
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Appendix

A. Simplex Equiangular Tight Frame (ETF)

« A geometric structure formed at the terminal phase of training

A simplex ETF refers to a matrix that is composed of K vectors E = [ey, ...,e,] € R2*X that satisfies:

K 1. .
E= —U IK_E]‘K]‘K

« U € R%*X js an orthogonal matrix that satisfies UTU = I, and 1k is an all-ones vector

* All column vectors in E have the same £, norm and any pair satisfies:

1 ifi=j

T = if i #j




Appendix

B. Dot-Regression (DR) Loss

 Elimination of the push term
« The gradient of CE loss is composed of a pu// term and a push term
« pull term drives the feature into its classifier prototype of the same class
« push term pushes the feature away from the prototypes of different classes

* DR loss includes only the pu// gradients assuming the optimal prototypes are given by the ETF:

L(ﬁi:WETF) = (Wyl.Ul )

* [i; is the normalized feature, Wy is the ETF matrix, and w; is the prototype in E for class y;



Appendix

C. Generalized Average Accuracy

« Complement metric for novel-class performance [10]
« Existing aAcc, lAcc is dominated by the base-class performance, having bias towards base-class regardless of the
inferior performance on the novel class

» Existing aAcc is written by:

aAcc; = "olv;ll
—H (=1
|Ynovel| ( )

* |yl is the size of the labeling space of task T;, A{ denotes the accuracy on the class set of task T;, when the model

has been trained up to the task T;

. il s 100 large in the FSCIL settings (e.g. lyly—‘l = 12 for CIFAR-100 and minilmageNet, 10 for CUB-200)

|Ynovetl novell



Appendix

C. Generalized Average Accuracy

« Complement metric for novel-class performance [10]
« To overcome the limitations of existing aAcc, lAcc, we define the generalized accuracy (gAcc) as:

o —ZL |yl| A1+ Z

| Ynovel |

gAcc;(a) =

|yl .
ao————+ (i —1
|Ynovel| ( )

« gAcc generalizes the a to any rational numbers in [0,1]

The area under the curve (AUC) of gAcc;(a) is defined as:

1
gAcc; = ngcci(oc) da
0

For multiple tasks, we average the gAcc; for each task and get an overall metric gAcc:

1
A =—E Acc;
gAcc nt.gccl
l



Appendix

D. Training Implementation

« NC-FSCIL [4] Baseline
« We follow the same hyperparameter settings except:
* Fine-tuning learning rate (0.3 — 0.02) at CIFAR-100
« Samples per GPU (8 — 32)
* Uncertainty Module
« We adopt two-layer MLP with a hidden dimension of 256.
« A RelU activation function is used and a sigmoid activation at the final layer
« We use Gaussian noise with a standard deviation of 0.05 to the interpolated features
*  We use uncertainty loss of 0.1 throughout all training stages.
« Prediction Calibration

« We use value of 0.05 for a in the re-weighting process



Appendix

E. Effectiveness of Uncertainty Module

Slight improvement in overall accuracy when UC module applied alone

We conjecture the additional UC loss applied in addition to the DR loss

DR loss primarily focuses on aligning with G.T ETF vectors

UC loss aims to model the relative alignment between Base and Incremental ETF
« Consider two feature vectors A,B

« The DR loss is identical, whereas EUC scores differ A Q.. B

Figure 15. Diagram of difference between DR loss and EUC score in measuring alignment with ETF prototypes



